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Abstract

A new analytical and numerical method is presented to assess 3D deformation within lava domes. The method allows any simultaneous

combination of strain components, even that of a pure shear and six elementary simple shear components. The method’s practical use is

presented. Model results provide the following information for lava dome strain patterns: in the upper part of a dome stretching is

perpendicular to flow direction and in the lower part it is parallel. Flinn parameter values indicate a flattening strain ellipsoid through the

dome, except in a small zone in the centre, where it is a constriction ellipsoid.
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1. Introduction

In a recent paper (Buisson and Merle, 2002), analogue

experiments have been conducted to assess the displace-

ment and velocity patterns within lava domes. Silicone

putty, used to simulate the analogue-magma, was vertically

extruded from a reservoir and flowed on a rigid, horizontal

base (Fig. 1). The evolving geometry with time has been

described in detail and the competing effects of injection

and gravity analysed in terms of upward and downward

movements within the dome (Buisson and Merle, 2002).

Deformation of a square grid has allowed the determination

of orientation of the flattening plane in a vertical section.

Following previous studies on strain simulation within

geological structures (e.g. Coward, 1976; Brun, 1977;

Coward and Kim, 1981; Brun and Burg, 1982; Sanderson,

1982; Sanderson and Marchini, 1984; Merle, 1986; Ellis and

Watkinson, 1987; Tikoff and Teyssier, 1994; Jones and

Tanner, 1995; Merle and Gapais, 1997), strain pattern can

be determined using numerical models involving combi-

nations of simple shear and pure shear components. In this

paper, we use strain components and strain gradients

inferred from the deformed grid to perform a numerical

computation of the 3D strain within natural domes. This 3D

approach makes it possible to determine stretching direction

versus flow direction and the type of strain ellipsoids in

space, which can help in interpreting strain in natural

examples.

2. A universal deformation matrix

Strain components as deduced from the deformed grid

both in section and at the upper free surface of the 3D

experiments are used to propose a general model of the total

strain generated in three dimensions of space. Numerical

modelling is done with 3D Cartesian co-ordinates having

two axes (X and Y) lying along the horizontal basal plane on

which spreading occurs. The origin is located above the

centre of the feeding conduit (Fig. 1).

In the Buisson and Merle (2002) model, the deformed

squares of the grid reveal three main strain components,

which vary throughout the model (Fig. 1a). Coaxial

shortening or lengthening in the X, Y and Z directions

correspond to the first of these major strain components and

is referred to as a pure shear component. The three axes (kX,

kY, kZ) of the strain ellipsoid of this pure shear component

can be expressed in the following matrix DPS where each

point of (x0, y0, z0) co-ordinates before deformation are

transformed into points of (x0, y0, z0) co-ordinates after

deformation:
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with

DPS ¼

kX 0 0

0 kY 0

0 0 kZ

2
664

3
775

Lengthening occurs in the Y direction irrespective of

location within the dome as a result of radial displacement

(Buisson and Merle, 2002). Everywhere kZ is a shortening

axis. Shortening or lengthening may occur in the X direction

depending on the location within the dome.

Vertical and horizontal simple shear components are

clear from the deformation of the square grid as described in

detail in the experimental paper (Buisson and Merle, 2002).

They can be expressed as two simple shear components (gXZ

and gZX) acting in the X and Z directions, which can be

defined by the following deformation matrices:

DXZ ¼

1 0 gXZ

0 1 0

0 0 1

2
664

3
775

and

DZX ¼

1 0 0

0 1 0

gZX 0 1

2
664

3
775 ð2Þ

Strain gradients associated with these three strain

components are selected when the model reaches a steady

state flow, depending on the strain variations observed from

the experimental grid. An important result of the exper-

imental approach is that the sense of shearing of the gXZ

component is reversed in the upper part of the dome (Fig. 1c)

(Buisson and Merle, 2002).

The simultaneous combination of the three components

can be expressed by the following general deformation

matrix:

D ¼

kX 0 GXZ

0 kY 0

GZX 0 kZ

2
664

3
775 ð3Þ

in which the two off-diagonal elements G can be called the

effective shear deformation in the XZ plane (Tikoff and

Fossen, 1993). From previous studies (e.g. Coward and

Kim, 1981; Merle, 1986, 1998; Tikoff and Fossen, 1993;

Soto, 1997), it is clear that these off-diagonal terms are a

function of a combination of the pure and simple shear

components:

G ¼ f ðg; kÞ ð4Þ

Matrix multiplication in general is non-commutative.

This means that the general deformation matrix of Eq. (3) is

not the product of the deformation matrices DPS, DXZ and

DZX. Any strain result using the product of these elementary

matrices would be demonstrably different from the simul-

taneous combination of individual strain components.

In 1993, Tikoff and Fossen proposed a general defor-

mation matrix for simultaneous finite pure shear and finite

simple shear. This matrix allows the simultaneous combi-

nation of some specific thrusting and wrenching compo-

nents leading to a 3 £ 3 upper triangular matrix. That

approach has been successfully used in numerical modelling

of strain in lava tubes (Merle, 2000). In our simulation here,

vertical shearing in the Z direction makes the matrix differ-

ent from an upper triangular one so that the deformation

matrix proposed by Tikoff and Fossen (1993) could not be

used. A general deformation matrix for three dimensions

has also been proposed by Soto (1997), but equations are

complicated and too long to be managed easily.

In a recent paper, a new numerical method that can be

used for any combination of simple shear and pure shear

components has been proposed (Provost et al., 2004). We

follow herein this numerical method according to the

specific case in our experiments, but it is suitable for any

simultaneous combination of simple shear and pure shear

components. It is outside the scope of this paper to present

Fig. 1. (a) Photograph of a 2D experiment (Buisson and Merle, 2002). (b)

Sketch of a lava dome: the magma is injected vertically through a feeding

conduit and flows radially on a rigid planar base. (c) Sense of shear of the

two simple shear components (gZX and gXZ) and orientations of the pure

shear components (kX, kY, kZ) for the numerical simulation.
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the theory explaining this new numerical method, of which

full details can be found in Provost et al. (2004). Here we

simply show the application of the approach for any simple

shear and pure shear combination.

According to Ramberg (1975), the instantaneous strain

rate (or incremental) matrix (A) can be calculated taking the

logarithm of each finite strain matrix (D) as follows:

APS ¼ lnðDPSÞ ð5Þ

AXZ ¼ lnðDXZÞ ð6Þ

AZX ¼ lnðDZXÞ ð7Þ

The incremental matrix (ASC) for the simultaneous

combination of the three strain components is the sum of

each individual incremental matrix:

ASC ¼ APS þ AXZ þ AZX ð8Þ

Then, the finite deformation matrix for the simultaneous

combination under consideration is given by taking the

exponential of the incremental matrix ASC:

D ¼ eASC ð9Þ

This numerical method may be used with the help of any

mathematical software, such as Matlab, which calculates the

logarithm and the exponential of a 3 £ 3 matrix. The general

solution of the problem is given by the following universal

deformation matrix D:

D ¼ expðlnD1 þ lnD2 þ … þ lnDnÞ ð10Þ

Then, strain can be solved from the symmetrical Finger

tensor (F ¼ D £ D t; Malvern, 1969, p. 174), which has

eigenvalues Ei equal to the principal quadratic elongations

and eigenvectors parallel to the principal strain axes. The

three principal axes (l1, l2 and l3) of the strain ellipsoid are

defined as the square root of the eigenvalues such as

li ¼
ffiffiffi
Ei

p
, with l1 . l2 . l3. The shape of the strain

ellipsoid is given by the Flinn parameter K (K ¼ [(l1/

l2) 2 1)/(l2/l3) 2 1]), for which K , 1 and K . 1 indi-

cates flattening (l1 . l2 . 1 . l3) and constriction

(l1 . 1 . l2 . l3) type ellipsoids, respectively. Plane

strain means no change in the intermediate axis (l2 ¼ 1)

and yields K ¼ 1.

3. Results

The input parameters in our simulation (kx, ky, kz, gXZ,

gZX) are determined from the comparison through time of

the deformed grids emplaced both on cross-sections for 2D

experiments and on the upper free surface for 3D experi-

ments. This makes it possible to show that ky and kz within

Fig. 2. Specific values of the input parameters used for the numerical simulation at 12 locations on the cross-section (explanation in the text).
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the model are everywhere the stretching and shortening

axes, respectively. The parameter kx is a shortening axis in

the main part of the model, but becomes a stretching axis

when approaching the periphery of the model. Senses of

shear are shown in Fig. 1c, as deduced from the deformed

squares observed in cross-sections (Buisson and Merle,

2002). It is convenient to divide the cross-section into seven

domains. Specific values of strain parameters measured at

some locations in the model allow the determination of

strain gradients that are used in the numerical simulation

(Fig. 2). A full description of the input parameters can be

found in Buisson (2001).

Results are shown on a vertical half-section from the

feeding conduit in the centre of the dome to the frontal

rolling zone (Buisson and Merle, 2002). Deformation being

axisymmetrical around the vertical axis passing through the

central feeding conduit, any vertical half-section is

considered to reveal the same strain pattern, provided that

the flow occurs on a horizontal planar base.

3.1. Attitude of flattening planes

The flattening plane is normal to the short axis of the

strain ellipsoid and contains the two other strain axes.

Results of computations show that the long axis (l1) of the

strain ellipsoid across the model is either parallel or per-

pendicular to the vertical section. The attitude of the flat-

tening plane in a vertical section can be reconstructed by

plotting either the long (l1) or the intermediate (l2) axes of

the strain ellipsoid across the model.

The orientation of the flattening plane shown in Fig. 3

exhibits a concentric pattern around the feeding conduit, as

already observed in experiments (Buisson and Merle, 2002).

In a way remarkably similar to experiments, the triple

junction between flattening plane trajectories defines a small

isotropic triangular area in vertical sections.

3.2. Orientation of stretching axis

The flow direction is parallel to each vertical cross-

section. It is vertical above the feeding conduit and then it

changes to become sub-horizontal next to the feeding stem.

The orientation of the three principal axes of the strain

ellipsoid is shown in Fig. 4. Two different domains can be

defined. The lower part of the section reveals a stretch axis

parallel to the vertical cross-section, which is parallel to the

flow direction on a plan view. It dips towards the feeding

conduit and becomes more and more flat with time as strain

increases. In contrast, the stretch axis is perpendicular to the

vertical cross-section in the upper part of the model, which

is perpendicular to the flow direction on a plan view. The

limit between the two zones is a sloping line that starts from

the basal plane next to the feeding conduit and merges

upward to the front of the model. In three dimensions, this

makes it possible to infer a concentric stretching in the

upper part of the flow and a radial stretching in the lower

part of the flow.

The distribution of the stretching within the flow is due to

the relative magnitude of the three strain components, which

are simultaneously combined in the numerical simulation. As

already shown for radial flow (Merle, 1998), the 3D coaxial

component (k) generates a concentric stretching perpendicular

to the flow direction, whereas the two simple shear

components (gxz and gzx) generate a radial stretching parallel

to the flow. Local proportions of k and g components therefore

control whether stretching is concentric or radial. The

significant increase of the gxz component near the base of

the model explains the parallelism between stretching and

displacement in the lower part of the flow. Similar results in

radial flow have been reported both from experiments (Merle,

1998) and natural lava domes (Castro et al., 2002).

3.3. Shape of strain ellipsoid

Computations of the Flinn parameter reveal that K is

much smaller than one throughout most of the model

indicating flattening type ellipsoids (Fig. 5). However, K

values are close to one when approaching the upper free

surface of the model, which defines a thin outer zone of

plane strain.

The most spectacular result of this simulation is a zone of

constriction-type ellipsoids (K . 1) located around the

isotropic area defined in section by the triple junction of the

flattening planes (Fig. 5). K values as high as 63 can be

observed in this zone where there is no planar fabric. This

indicates that the isotropic area in vertical section is not a zone

of low strain. It is best described as a constriction zone, a kind

Fig. 3. (a) Orientation of the flattening planes in vertical section. (b)

Simplified flattening plane trajectories as deduced from the simulation.

Note the triple junction of the trajectories that defines an isotropic area in

the strain field (shaded area).
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of horizontal tube with stretching parallel to it and oriented

perpendicular to the vertical section (i.e. concentric).

4. Limitations of the model

As explained in Buisson and Merle (2002), 2D

experiments have been conducted with an isothermal

Newtonian fluid, which cannot be considered as a perfect

analogue of the magma behaviour in natural domes. These

experiments, however, were the first attempt ever done to

investigate the internal strain in vertical cross-section of a

lava dome. Starting from first principles, it has been shown

that scale modelling using a Newtonian fluid is likely to give

a basic estimate of the evolving internal strain within a

dome, which would be refined when more appropriate

experimental procedures are implemented. As the numerical

simulation was made from strain gradients observed in the

experiments, the same limitation should be expressed

regarding the results. The 3D strain pattern calculated in

Fig. 4. (a) Orientations and magnitudes of the three main axes of the strain ellipsoid. Circles mean that the stretching axis (l1) is perpendicular to the section and

that the magnitudes of the least (l3) and intermediate (l2) strain axes are shown together. When the stretching is parallel to the section, the intermediate axis

(l2) is normal to the section and its magnitude is not shown. (b) Spatial distribution of radial and concentric stretching fields within a (half) vertical section of a

lava dome.
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this paper is the one that could have been observed in

experiments if 3D measurements had been possible.

5. Concluding remarks

The study of strain in lava domes provides the oppor-

tunity to test a new numerical method to compute the strain

pattern in geological structures. This method presented in

detail in a companion paper (Provost et al., 2004) allows the

calculation of any simultaneous combination of simple

shear and pure shear components. It is especially useful

when the simultaneous deformation is not expressed by an

upper triangular matrix, a condition that has to be fulfilled

for previous proposed solutions (Tikoff and Fossen, 1993).

The numerical simulation of strain in lava domes gives

further information on the kinematics of dome emplace-

ment, not available from the 2D experiments (Buisson and

Merle, 2002). Whereas the flattening plane trajectories are

remarkably similar to those obtained from analogue

modelling, this study shows that the stretching is concentric

in the upper part of the dome, which is perpendicular to the

radial direction of flow. The strain is of flattening type

(K , 1) throughout most of the dome, except in a small

triangular zone where it is of constriction type (K . 1).
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